Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Immunol ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589619

RESUMO

Natural killer (NK) cells are a critical first line of defense against viral infection. Rare mutations in a small subset of transcription factors can result in decreased NK cell numbers and function in humans, with an associated increased susceptibility to viral infection. However, our understanding of the specific transcription factors governing mature human NK cell function is limited. Here we use a non-viral CRISPR-Cas9 knockout screen targeting genes encoding 31 transcription factors differentially expressed during human NK cell development. We identify myocyte enhancer factor 2C (MEF2C) as a master regulator of human NK cell functionality ex vivo. MEF2C-haploinsufficient patients and mice displayed defects in NK cell development and effector function, with an increased susceptibility to viral infection. Mechanistically, MEF2C was required for an interleukin (IL)-2- and IL-15-mediated increase in lipid content through regulation of sterol regulatory element-binding protein (SREBP) pathways. Supplementation with oleic acid restored MEF2C-deficient and MEF2C-haploinsufficient patient NK cell cytotoxic function. Therefore, MEF2C is a critical orchestrator of NK cell antiviral immunity by regulating SREBP-mediated lipid metabolism.

3.
Immunol Rev ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426615

RESUMO

NK cells are short-lived innate lymphocytes that can mediate antigen-independent responses to infection and cancer. However, studies from the past two decades have shown that NK cells can acquire transcriptional and epigenetic modifications during inflammation that result in increased survival and lifespan. These findings blur the lines between the innate and adaptive arms of the immune system, and suggest that the homeostatic mechanisms that govern the persistence of innate immune cells are malleable. Indeed, recent studies have shown that NK cells undergo continuous and strictly regulated adaptations controlling their survival during development, tissue residency, and following inflammation. In this review, we summarize our current understanding of the critical factors regulating NK cell survival throughout their lifespan, with a specific emphasis on the epigenetic modifications that regulate the survival of NK cells in various contexts. A precise understanding of the molecular mechanisms that govern NK cell survival will be important to enhance therapies for cancer and infectious diseases.

4.
Cell Rep ; 43(3): 113800, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38386559

RESUMO

Infection of mice by mouse cytomegalovirus (MCMV) triggers activation and expansion of Ly49H+ natural killer (NK) cells, which are virus specific and considered to be "adaptive" or "memory" NK cells. Here, we find that signaling lymphocytic activation molecule family receptors (SFRs), a group of hematopoietic cell-restricted receptors, are essential for the expansion of Ly49H+ NK cells after MCMV infection. This activity is largely mediated by CD48, an SFR broadly expressed on NK cells and displaying augmented expression after MCMV infection. It is also dependent on the CD48 counter-receptor, 2B4, expressed on host macrophages. The 2B4-CD48 axis promotes expansion of Ly49H+ NK cells by repressing their phagocytosis by virus-activated macrophages through inhibition of the pro-phagocytic integrin lymphocyte function-associated antigen-1 (LFA-1) on macrophages. These data identify key roles of macrophages and the 2B4-CD48 pathway in controlling the expansion of adaptive NK cells following MCMV infection. Stimulation of the 2B4-CD48 axis may be helpful in enhancing adaptive NK cell responses for therapeutic purposes.


Assuntos
Infecções por Citomegalovirus , Receptores Imunológicos , Animais , Camundongos , Receptores Imunológicos/metabolismo , Antígeno CD48/metabolismo , Antígenos CD/metabolismo , Ativação Linfocitária , Células Matadoras Naturais , Receptores de Superfície Celular/metabolismo , Proteínas de Transporte/metabolismo , Macrófagos/metabolismo , Fagocitose
5.
Nat Metab ; 5(12): 2237-2252, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37996702

RESUMO

Obesity is associated with chronic low-grade white adipose tissue (WAT) inflammation that can contribute to the development of insulin resistance in mammals. Previous studies have identified interleukin (IL)-12 as a critical upstream regulator of WAT inflammation and metabolic dysfunction during obesity. However, the cell types and mechanisms that initiate WAT IL-12 production remain unclear. Here we show that conventional type 1 dendritic cells (cDC1s) are the cellular source of WAT IL-12 during obesity through analysis of mouse and human WAT single-cell transcriptomic datasets, IL-12 reporter mice and IL-12p70 protein levels by enzyme-linked immunosorbent assay. We demonstrate that cDC1s contribute to obesity-associated inflammation by increasing group 1 innate lymphocyte interferon-γ production and inflammatory macrophage accumulation. Inducible depletion of cDC1s increased WAT insulin sensitivity and systemic glucose tolerance during diet-induced obesity. Mechanistically, endocytosis of apoptotic bodies containing self-DNA by WAT cDC1s drives stimulator of interferon genes (STING)-dependent IL-12 production. Together, these results suggest that WAT cDC1s act as critical regulators of adipose tissue inflammation and metabolic dysfunction during obesity.


Assuntos
Resistência à Insulina , Obesidade , Animais , Humanos , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Adiposidade/genética , Inflamação/metabolismo , Interleucina-12/metabolismo , Mamíferos/metabolismo
7.
Immunity ; 56(6): 1168-1186, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37315533

RESUMO

Recent studies have demonstrated that tissue homeostasis and metabolic function are dependent on distinct tissue-resident immune cells that form functional cell circuits with structural cells. Within these cell circuits, immune cells integrate cues from dietary contents and commensal microbes in addition to endocrine and neuronal signals present in the tissue microenvironment to regulate structural cell metabolism. These tissue-resident immune circuits can become dysregulated during inflammation and dietary overnutrition, contributing to metabolic diseases. Here, we review the evidence describing key cellular networks within and between the liver, gastrointestinal tract, and adipose tissue that control systemic metabolism and how these cell circuits become dysregulated during certain metabolic diseases. We also identify open questions in the field that have the potential to enhance our understanding of metabolic health and disease.


Assuntos
Tecido Adiposo , Trato Gastrointestinal , Humanos , Inflamação , Fígado
8.
Nat Immunol ; 24(5): 780-791, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36928413

RESUMO

Viral infection outcomes are sex biased, with males generally more susceptible than females. Paradoxically, the numbers of antiviral natural killer (NK) cells are increased in males. We demonstrate that while numbers of NK cells are increased in male mice, they display decreased effector function compared to females in mice and humans. These differences were not solely dependent on gonadal hormones, because they persisted in gonadectomized mice. Kdm6a (which encodes the protein UTX), an epigenetic regulator that escapes X inactivation, was lower in male NK cells, while NK cell-intrinsic UTX deficiency in female mice increased NK cell numbers and reduced effector responses. Furthermore, mice with NK cell-intrinsic UTX deficiency showed increased lethality to mouse cytomegalovirus. Integrative multi-omics analysis revealed a critical role for UTX in regulating chromatin accessibility and gene expression critical for NK cell homeostasis and effector function. Collectively, these data implicate UTX as a critical molecular determinant of sex differences in NK cells.


Assuntos
Genes Ligados ao Cromossomo X , Caracteres Sexuais , Masculino , Humanos , Feminino , Camundongos , Animais , Epigênese Genética , Células Matadoras Naturais , Histona Desmetilases/genética
9.
Cell Rep ; 42(2): 112141, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36807146

RESUMO

Tissue-resident immune cells are critical to the initiation and potentiation of inflammation. However, the tissue-protective cellular communication networks initiated by resident immunity during sterile inflammation are not well understood. Using single-cell transcriptomic analysis, we show the liver-resident cell connectome and signalome during acute liver injury. These analyses identify Il12b as a central regulator of liver injury-associated changes in gene expression. Interleukin (IL)-12 produced by conventional type 1 dendritic cells (cDC1s) is required for protection during acute injury through activation of interferon (IFN)-γ production by liver-resident type 1 innate lymphoid cells (ILC1s). Using a targeted in vivo CRISPR-Cas9 screen of innate immune sensing pathways, we find that cDC1-intrinsic cGAS-STING signaling acts upstream of IL-12 production to initiate early protective immune responses. Our study identifies the core communication hubs initiated by tissue-resident innate immune cells during sterile inflammation in vivo and implicates cDC1-derived IL-12 as an important regulator of this process.


Assuntos
Imunidade Inata , Linfócitos , Humanos , Linfócitos/metabolismo , Fígado/metabolismo , Inflamação , Nucleotidiltransferases/metabolismo , Interleucina-12
10.
Immunity ; 56(3): 531-546.e6, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36773607

RESUMO

Tissue health is dictated by the capacity to respond to perturbations and then return to homeostasis. Mechanisms that initiate, maintain, and regulate immune responses in tissues are therefore essential. Adaptive immunity plays a key role in these responses, with memory and tissue residency being cardinal features. A corresponding role for innate cells is unknown. Here, we have identified a population of innate lymphocytes that we term tissue-resident memory-like natural killer (NKRM) cells. In response to murine cytomegalovirus infection, we show that circulating NK cells were recruited in a CX3CR1-dependent manner to the salivary glands where they formed NKRM cells, a long-lived, tissue-resident population that prevented autoimmunity via TRAIL-dependent elimination of CD4+ T cells. Thus, NK cells develop adaptive-like features, including long-term residency in non-lymphoid tissues, to modulate inflammation, restore immune equilibrium, and preserve tissue health. Modulating the functions of NKRM cells may provide additional strategies to treat inflammatory and autoimmune diseases.


Assuntos
Infecções por Citomegalovirus , Muromegalovirus , Humanos , Animais , Camundongos , Células Matadoras Naturais , Imunidade Adaptativa , Linfócitos T , Imunidade Inata
11.
Cell Rep ; 42(1): 111937, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640314

RESUMO

Group 1 innate lymphoid cells (ILCs) comprise a heterogeneous family of cytotoxic natural killer (NK) cells and ILC1s. We identify a population of "liver-type" ILC1s with transcriptional, phenotypic, and functional features distinct from those of conventional and liver-resident NK cells as well as from other previously described human ILC1 subsets. LT-ILC1s are CD49a+CD94+CD200R1+, express the transcription factor T-BET, and do not express the activating receptor NKp80 or the transcription factor EOMES. Similar to NK cells, liver-type ILC1s produce IFN-γ, TNF-α, and GM-CSF; however, liver-type ILC1s also produce IL-2 and lack perforin and granzyme-B. Liver-type ILC1s are expanded in cirrhotic liver tissues, and they can be produced from blood-derived ILC precursors in vitro in the presence of TGF-ß1 and liver sinusoidal endothelial cells. Cells with similar signature and function can also be found in tonsil and intestinal tissues. Collectively, our study identifies and classifies a population of human cross-tissue ILC1s.


Assuntos
Imunidade Inata , Linfócitos , Humanos , Células Endoteliais , Células Matadoras Naturais , Fígado , Fatores de Transcrição , Análise de Sequência de RNA
12.
Blood ; 140(19): 2076-2090, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-35981499

RESUMO

Graft-versus-host disease (GVHD) remains a major complication after allogeneic hematopoietic stem cell transplantation, a widely used therapy for hematologic malignancies and blood disorders. Here, we report an unexpected role of cytokine leukemia inhibitory factor (LIF) in protecting against GVHD development. Administrating recombinant LIF protein (rLIF) protects mice from GVHD-induced tissue damage and lethality without compromising the graft-versus-leukemia activity, which is crucial to prevent tumor relapse. We found that rLIF decreases the infiltration and activation of donor immune cells and protects intestinal stem cells to ameliorate GVHD. Mechanistically, rLIF downregulates IL-12-p40 expression in recipient dendritic cells after irradiation through activating STAT1 signaling, which results in decreased major histocompatibility complex II levels on intestinal epithelial cells and decreased donor T-cell activation and infiltration. This study reveals a previously unidentified protective role of LIF for GVHD-induced tissue pathology and provides a potential effective therapeutic strategy to limit tissue pathology without compromising antileukemic efficacy.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Fator Inibidor de Leucemia , Leucemia , Animais , Camundongos , Doença Enxerto-Hospedeiro/prevenção & controle , Efeito Enxerto vs Leucemia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Leucemia/terapia , Fator Inibidor de Leucemia/genética , Transplante Homólogo
13.
Cells ; 11(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36010694

RESUMO

The journal retracts the article, "Rolot, M. and O'Sullivan, T. E. Living with Yourself: Innate lymphoid Cell Immunometabolism. Cells 2020, 9, 334" [...].

14.
Nat Immunol ; 23(4): 556-567, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35288713

RESUMO

Natural killer (NK) cells are innate lymphocytes that possess traits of adaptive immunity, such as memory formation. However, the molecular mechanisms by which NK cells persist to form memory cells are not well understood. Using single-cell RNA sequencing, we identified two distinct effector NK cell (NKeff) populations following mouse cytomegalovirus infection. Ly6C- memory precursor (MP) NK cells showed enhanced survival during the contraction phase in a Bcl2-dependent manner, and differentiated into Ly6C+ memory NK cells. MP NK cells exhibited distinct transcriptional and epigenetic signatures compared with Ly6C+ NKeff cells, with a core epigenetic signature shared with MP CD8+ T cells enriched in ETS1 and Fli1 DNA-binding motifs. Fli1 was induced by STAT5 signaling ex vivo, and increased levels of the pro-apoptotic factor Bim in early effector NK cells following viral infection. These results suggest that a NK cell-intrinsic checkpoint controlled by the transcription factor Fli1 limits MP NK formation by regulating early effector NK cell fitness during viral infection.


Assuntos
Infecções por Citomegalovirus , Muromegalovirus , Imunidade Adaptativa , Animais , Linfócitos T CD8-Positivos , Memória Imunológica , Células Matadoras Naturais , Camundongos
15.
Nat Immunol ; 22(5): 639-653, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33907320

RESUMO

White adipose tissue (WAT) is an essential regulator of energy storage and systemic metabolic homeostasis. Regulatory networks consisting of immune and structural cells are necessary to maintain WAT metabolism, which can become impaired during obesity in mammals. Using single-cell transcriptomics and flow cytometry, we unveil a large-scale comprehensive cellular census of the stromal vascular fraction of healthy lean and obese human WAT. We report new subsets and developmental trajectories of adipose-resident innate lymphoid cells, dendritic cells and monocyte-derived macrophage populations that accumulate in obese WAT. Analysis of cell-cell ligand-receptor interactions and obesity-enriched signaling pathways revealed a switch from immunoregulatory mechanisms in lean WAT to inflammatory networks in obese WAT. These results provide a detailed and unbiased cellular landscape of homeostatic and inflammatory circuits in healthy human WAT.


Assuntos
Imunidade Inata , Obesidade/imunologia , Gordura Subcutânea Abdominal/imunologia , Abdominoplastia , Adipócitos/imunologia , Adipócitos/metabolismo , Adulto , Comunicação Celular/imunologia , Linhagem Celular , Células Dendríticas Foliculares/imunologia , Células Dendríticas Foliculares/metabolismo , Feminino , Humanos , Inflamação/imunologia , Inflamação/patologia , Linfócitos/imunologia , Linfócitos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Obesidade/patologia , Obesidade/cirurgia , RNA-Seq , Transdução de Sinais/imunologia , Análise de Célula Única , Gordura Subcutânea Abdominal/patologia , Gordura Subcutânea Abdominal/cirurgia
16.
Clin Transl Immunology ; 10(1): e1238, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33456775

RESUMO

Natural killer (NK) cells are cytotoxic innate lymphocytes that protect against viral infection and tumor metastasis. Despite their inherent ability to kill a broad range of virally infected, stressed and transformed cells, low numbers of dysfunctional NK cells are often observed in many advanced solid human cancers. Here, we review the potential mechanisms that influence suboptimal mature NK cell recruitment and function in the tumor microenvironment (TME) of solid tumors. We further highlight current immunotherapy approaches aimed to circumvent NK cell dysfunction and discuss next-generation strategies to enhance adoptive NK cell therapy through targeting intrinsic and extrinsic checkpoints the regulate NK cell functionality in the TME. Understanding the mechanisms that drive NK cell dysfunction in the TME will lead to novel immunotherapeutic approaches in the fight against cancer.

17.
Front Immunol ; 12: 816658, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35082797

RESUMO

NK cells play a crucial role in host protection during tumorigenesis. Throughout tumor development, however, NK cells become progressively dysfunctional through a combination of dynamic tissue-specific and systemic factors. While a number of immunosuppressive mechanisms present within the tumor microenvironment have been characterized, few studies have contextualized the spatiotemporal dynamics of these mechanisms during disease progression and across anatomical sites. Understanding how NK cell immunosuppression evolves in these contexts will be necessary to optimize NK cell therapy for solid and metastatic cancers. Here, we outline the spatiotemporal determinants of antitumor NK cell regulation, including heterogeneous tumor architecture, temporal disease states, diverse cellular communities, as well as the complex changes in NK cell states produced by the sum of these higher-order elements. Understanding of the signals encountered by NK cells across time and space may reveal new therapeutic targets to harness the full potential of NK cell therapy for cancer.


Assuntos
Citotoxicidade Imunológica , Imunomodulação , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Animais , Biomarcadores , Comunicação Celular/genética , Comunicação Celular/imunologia , Terapia Combinada , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos , Imunidade Inata , Imunoterapia , Estadiamento de Neoplasias , Neoplasias/diagnóstico , Neoplasias/terapia , Especificidade do Receptor de Antígeno de Linfócitos T , Microambiente Tumoral/imunologia
18.
STAR Protoc ; 1(3): 100113, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33377009

RESUMO

CRISPR-Cas9 genome engineering can be used to functionally investigate the complex mechanisms of immune system regulation. Decades of work have aimed to genetically reprogram innate immunity, but current approaches are inefficient or nonspecific, limiting their use. Here, we detail an optimized strategy for non-viral CRISPR-Cas9 ribonucleoprotein (cRNP) genomic editing of primary innate lymphocytes (ILCs) and myeloid lineage cells, resulting in high-efficiency editing of target gene expression from a single electroporation. For complete details on the use and execution of this protocol, please refer to Riggan et al. (2020).


Assuntos
Eletroporação/métodos , Edição de Genes/métodos , Imunidade Inata/genética , Animais , Sistemas CRISPR-Cas/genética , Genômica , Humanos , Imunidade Inata/fisiologia , Linfócitos/metabolismo , Células Mieloides/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
19.
Cell Rep ; 31(7): 107651, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32433960

RESUMO

CRISPR genome engineering has become a powerful tool to functionally investigate the complex mechanisms of immune system regulation. While decades of work have aimed to genetically reprogram innate immunity, the utility of current approaches is restricted by poor knockout efficiencies or limited specificity for mature cell lineages in vivo. Here, we describe an optimized strategy for non-viral CRISPR-Cas9 ribonucleoprotein (cRNP) genomic editing of mature primary mouse innate lymphocyte cells (ILCs) and myeloid lineage cells that results in an almost complete loss of single or double target gene expression from a single electroporation. Furthermore, we describe in vivo adoptive transfer mouse models that can be utilized to screen for gene function during viral infection using cRNP-edited naive natural killer (NK) cells and bone-marrow-derived conventional dendritic cell precursors (cDCPs). This resource will enhance target gene discovery and offer a specific and simplified approach to gene editing in the mouse innate immune system.


Assuntos
Edição de Genes/métodos , Terapia Genética/métodos , Imunidade Inata/genética , Ribonucleoproteínas/metabolismo , Animais , Sistemas CRISPR-Cas , Camundongos
20.
Cells ; 9(2)2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32024050

RESUMO

Innate lymphoid cells (ILCs) are tissue-resident sentinels of the immune system that function to protect local tissue microenvironments against pathogens and maintain homeostasis. However, because ILCs are sensitively tuned to perturbations within tissues, they can also contribute to host pathology when critical activating signals become dysregulated. Recent work has demonstrated that the crosstalk between ILCs and their environment has a significant impact on host metabolism in health and disease. In this review, we summarize studies that support evidence for the ability of ILCs to influence tissue and systemic metabolism, as well as how ILCs can be regulated by environmental changes in systemic host metabolism. We also highlight studies demonstrating how ILC- intrinsic metabolism influences their activation, proliferation, and homeostasis. Finally, this review discusses the challenges and open questions in the rapidly expanding field of ILCs and immunometabolism.


Assuntos
Imunidade Inata , Linfócitos/imunologia , Linfócitos/metabolismo , Dieta , Homeostase , Humanos , Redes e Vias Metabólicas , Obesidade/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...